KKYUCERZ mita

DF-73

SERVICE MANUAL

Published in Sep. '03

CAUTION

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

CAUTION

Double-pole/neutral fusing.

RSyICERa mita

Safety precautions

This booklet provides safety warnings and precautions for our service personnel to ensure the safety of their customers, their machines as well as themselves during maintenance activities. Service personnel are advised to read this booklet carefully to familiarize themselves with the warnings and precautions described here before engaging in maintenance activities.

Safety warnings and precautions

Various symbols are used to protect our service personnel and customers from physical danger and to prevent damage to their property. These symbols are described below:

ADANGER: High risk of serious bodily injury or death may result from insufficient attention to or incorrect compliance with warning messages using this symbol.

A WARNING:Serious bodily injury or death may result from insufficient attention to or incorrect compliance with warning messages using this symbol.
A. CAUTION: Bodily injury or damage to property may result from insufficient attention to or incorrect compliance with warning messages using this symbol.

Symbols

The triangle (\triangle) symbol indicates a warning including danger and caution. The specific point of attention is shown inside the symbol.

General warning.

Warning of risk of electric shock.

SIS
Warning of high temperature.
Q indicates a prohibited action. The specific prohibition is shown inside the symbol.
General prohibited action.

Disassembly prohibited.
indicates that action is required. The specific action required is shown inside the symbol.
(! General action required.

Remove the power plug from the wall outlet.

Always ground the copier.

1. Installation Precautions

A. WARNING

- Do not use a power supply with a voltage other than that specified. Avoid multiple connections to one outlet: they may cause fire or electric shock. When using an extension cable, always check that it is adequate for the rated current.

- Connect the ground wire to a suitable grounding point. Not grounding the copier may cause fire or electric shock. Connecting the earth wire to an object not approved for the purpose may cause explosion or electric shock. Never connect the ground cable to any of the following: gas pipes, lightning rods, ground cables for telephone lines and water pipes or faucets not approved by the proper authorities.

ACAUTION:

- Do not place the copier on an infirm or angled surface: the copier may tip over, causing injury. \qquad

- Do not install the copier in a humid or dusty place. This may cause fire or electric shock.

- Do not install the copier near a radiator, heater, other heat source or near flammable material. This may cause fire.

- Allow sufficient space around the copier to allow the ventilation grills to keep the machine as cool as possible. Insufficient ventilation may cause heat buildup and poor copying performance.

- Always handle the machine by the correct locations when moving it.
- Always use anti-toppling and locking devices on copiers so equipped. Failure to do this may cause the copier to move unexpectedly or topple, leading to injury.

- Avoid inhaling toner or developer excessively. Protect the eyes. If toner or developer is accidentally ingested, drink a lot of water to dilute it in the stomach and obtain medical attention immediately. If it gets into the eyes, rinse immediately with copious amounts of water and obtain medical attention.

- Advice customers that they must always follow the safety warnings and precautions in the copier's instruction handbook. \qquad

2. Precautions for Maintenance

A.WARNING

- Always remove the power plug from the wall outlet before starting machine disassembly

- Under no circumstances attempt to bypass or disable safety features including safety mechanisms and protective circuits.

- Always use parts having the correct specifications.
- Always use the thermostat or thermal fuse specified in the service manual or other related brochure when replacing them. Using a piece of wire, for example, could lead to fire or other serious accident.

- When the service manual or other serious brochure specifies a distance or gap for installation of a part, always use the correct scale and measure carefully.
- Always check that the copier is correctly connected to an outlet with a ground connection.
- Check that the power cable covering is free of damage. Check that the power plug is dust-free. If it is dirty, clean it to remove the risk of fire or electric shock.

- Never attempt to disassemble the optical unit in machines using lasers. Leaking laser light may damage eyesight.

- Handle the charger sections with care. They are charged to high potentials and may cause electric shock if handled improperly

ACAUTION

- Wear safe clothing. If wearing loose clothing or accessories such as ties, make sure they are safely secured so they will not be caught in rotating sections.

- Use utmost caution when working on a powered machine. Keep away from chains and belts.

- Handle the fixing section with care to avoid burns as it can be extremely hot.

- Check that the fixing unit thermistor, heat and press rollers are clean. Dirt on them can cause abnormally high temperatures.

- Do not remove the ozone filter, if any, from the copier except for routine replacement. \qquad

- Do not route the power cable where it may be stood on or trapped. If necessary, protect it with a cable cover or other appropriate item.

- Treat the ends of the wire carefully when installing a new charger wire to avoid electric leaks. \qquad
- Remove toner completely from electronic components.

- Run wire harnesses carefully so that wires will not be trapped or damaged. \qquad
- After maintenance, always check that all the parts, screws, connectors and wires that were removed, have been refitted correctly. Special attention should be paid to any forgotten connector, trapped wire and missing screws.
- Check that all the caution labels that should be present on the machine according to the instruction handbook are clean and not peeling. Replace with new ones if necessary.
- Handle greases and solvents with care by following the instructions below: \qquad
- Use only a small amount of solvent at a time, being careful not to spill. Wipe spills off completely.
- Ventilate the room well while using grease or solvents.
- Allow applied solvents to evaporate completely before refitting the covers or turning the main switch on.
- Always wash hands afterwards.
- Never dispose of toner or toner bottles in fire. Toner may cause sparks when exposed directly to fire in a furnace, etc.

- Should smoke be seen coming from the copier, remove the power plug from the wall outlet immediately. \qquad

3. Miscellaneous

A. WARNING

- Never attempt to heat the drum or expose it to any organic solvents such as alcohol, other than the specified refiner; it may generate toxic gas.

CONTENTS

1-1 Specifications
1-1-1 Specifications 1-1-1
1-1-2 Parts names 1-1-2
1-1-3 Machine cross section 1-1-3
1-1-4 Drive system 1-1-4
(1) Drive system 1 (machine front side) 1-1-4
(2) Drive system 2 (machine rear side) 1-1-4
1-2 Installation
1-2-1 Unpacking and installation 1-2-1
(1) Unpacking 1-2-1
(2) Remove the tapes and pad 1-2-2
1-3 Troubleshooting
1-3-1 Paper misfeed detection 1-3-1
(1) Paper misfeed indication 1-3-1
(2) Paper misfeed detection conditions 1-3-1
(3) Paper misfeeds 1-3-3
1-3-2 Self-diagnosis 1-3-6
(1) Self-diagnostic function 1-3-6
(2) Self-diagnostic codes 1-3-6
1-3-3 Electrical problems 1-3-8
(1) The reverse motor does not operate. 1-3-8
(2) The paper conveying motor does not operate. 1-3-8
(3) The adjustment motor does not operate. 1-3-8
(4) The tary elevation motor does not operate 1-3-8
(5) The separate solenoid does not operate. 1-3-8
(6) The flapper solenoid does not operate. 1-3-8
(7) The large gear solenoid does not operate. 1-3-9
(8) The paddle solenoid does not operate. 1-3-9
(9) The surface view solenoid does not operate 1-3-9
(10) Paper jams when the power switch is turned on. 1-3-9
(11) "Out of staples. Add staples." is displayed when the power switch is turned on. 1-3-10
1-3-4 Mechanical problems 1-3-11
(1) No paper conveying. 1-3-11
(2) No paper ejection to the exit tray. 1-3-11
(3) Paper jams. 1-3-11
(4) Abnormal noise is heard 1-3-11
1-4 Assembly and Disassembly
1-4-1 Assembly and disassembly 1-4-1
(1) Precautions 1-4-1
(2) Cleaning the paper conveying roller and reverse exit roller 1-4-2
2-1 Mechanical construction
2-1-1 Mechanical construction 2-1-1
(1) Reverse section 2-1-1
(2) Processing section 2-1-8
(3) Exit tray section 2-1-13
2-2 Electrical Parts Layout
2-2-1 Electrical parts layout 2-2-1
(1) PCB 2-2-1
(2) Switches and sensors 2-2-2
(3) Motors 2-2-3
(4) Solenoids 2-2-4
(5) Stapler section 2-2-5
2-3 Operation of the PCB
2-3-1 Main PCB 2-3-1
2-4 Appendixes
Timing chart No. 1 2-4-1
Timing chart No. 2 2-4-2
Timing chart No. 3 2-4-3
Periodic maintenance procedure 2-4-4
List of maintenance parts 2-4-4
Wring diagram 2-4-5

1-1-1 Specifications

Type ... Floor model	
Number of trays.......................... One tray	
Tray capacity When not	
	A3, B4 $(257 \mathrm{~mm} \times 364 \mathrm{~mm}), 11^{\prime \prime} \times 17$ " or $8^{1 / 2 "} \times 14^{\prime \prime}: 500$ sheets A4R, A4, $8^{1 / 2 "} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 8^{1 / 2} 2^{\prime \prime}: 1000$ sheets*
	*A4R and $8^{1 / 2 "} \times 11^{\prime \prime}$ during sorting or offset ejection: 500 sheets
When stapling 2 or 9 sheets:	
A4R, A4, B5, $8^{1 / 2 "} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 8^{1 / 2} 2^{\prime \prime}: 70$ to 50 sets	
A3, B4 ($257 \mathrm{~mm} \times 364 \mathrm{~mm}$), 11" $\times 17 \mathrm{\prime} \mathrm{\prime}$ or $8^{1 / 2 " 2} \times 14$ ": 25 to 12 sets	
A4R, A4, B5, $8^{1 / 2} 2^{\prime \prime} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 8^{1 / 2 "} 2^{\prime \prime}: 45$ to 16 sets	
	When stapling 21 or 30 sheets:
A4R, A4, B5, $8^{1 / 2} 2^{\prime \prime} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 8^{1 / 2} 2^{\prime \prime}: 45$ to 16 sets	
Stapling limit A3, B4 ($257 \mathrm{~mm} \times 364 \mathrm{~mm}$), Folio, $11^{\prime \prime} \times 17{ }^{\text {" }}$ or $8^{1 / 2 "} \times 14^{\prime \prime}$: 20 sheets	
A4R, A4, $8^{1 / 2} 2^{\prime \prime} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 8^{1 / 2} 2^{\prime \prime}: 30$ sheets	
Power source Electrically connected to the copier	
Dimensions 558 (W) $\times 526$ (D) $\times 916$ (H) mm	
$22^{\prime \prime}(W) \times 20^{11 / 16 " ~}(\mathrm{D}) \times 36^{1 / 16 " \prime}(\mathrm{H})$	
Weight	Approx. $25 \mathrm{~kg} / 55 \mathrm{lbs}$ (with attachments)

1-1-2 Parts names

Figure 1-1-1
(1) Exit tray
(2) Exit tray extension
(3) Finisher release botton
(4) Reverse cover
(5) Upper cover
(6) Stapler cover
(7) Staple holder

1-1-3 Machine cross section

Figure 1-1-2 Machine cross section
(1) Reverse section
(2) Processing section
(3) Exit tray section

1-1-4 Drive system

(1) Drive system 1 (machine front side)

(1) Paper conveying motor gear
(2) Pulley
(3) Gear $36 / 22$
(4) Gear 32
(5) Gear 27/36
(6) Gear 22/24
(7) Gear 18
(8) Gear 85

Figure 1-1-3
(2) Drive system 2 (machine rear side)

(1) Reverse motor gear
(2) Pulley 32
(3) Tension pulley
(4) Gear $32 / 20$
(5) Gear 20
(6) Gear 16
(7) Gear 32

Figure 1-1-4

1-2-1 Unpacking and installation

(1) Unpacking

(A)

Figure 1-2-1 Unpacking
(1) Document finisher
(2) Latch catch
(3) Rail retainer
(4) Guide rail
(5) Joints
(6) Outer case
(7) Top plate
(8) Pad
(9) Pad
(10) Pad
(11) Pad
(12) Pad
(13) Pad
(14) Pad
(15) Pad
(16) Hinge joints
(17) Skid
(18) Pad
(19) Supports
(2) Installation handbook
(21) Clamp
(2) M 4×6 binding screws
(2) 4×10 binding screws

5HL

(2) Remove the tapes and pad

When installing the machine, be sure to remove the following tapes and pad.

Procedure

1. Remove the two tapes holding the reverse cover.
2. Remove the two tapes holding the reverse guide.
3. Remove the tape holding the upper cover.
4. Open the upper cover and remove the pad.
5. Remove the tape holding the exit tray extension.
6. Open the stapler cover and remove the tape holding the stapler.
7. Remove the tape holding the signal cable and the air mat.

Figure 1-2-2

1-3-1 Paper misfeed detection

(1) Paper misfeed indication

When a paper jam occurs, the machine stops operating immediately. The copier operation section shows a jam message and the jam location.
To remove the jammed paper, detach the finisher from the copier.
To reset the paper misfeed detection, turn the joint switch (JSW) off and on.

(2) Paper misfeed detection conditions

Figure 1-3-1

Section	Jam code	Description	Conditions
Reverse section	80	Paper entry sensor nonarrival jam	The paper entry sensor (PES) is not turned on even if a specified time has elapsed after the copier exit signal was received.
	81	Paper entry sensor stay jam	The paper entry sensor (PES) is not turned off even if a specified time has elapsed after the paper entry sensor (PES) was turned on.
		Paper entry sensor remaining jam	The ON status of the paper entry sensor (PES) is detected when the power is turned on.
	82	Reverse sensor non-arrival jam	The reverse sensor (REVS) is not turned on even if a specified time has elapsed after the paper entry sensor (PES) was turned on.
			The reverse sensor (REVS) is not turned on even if a specified time has elapsed after paper was reversed.
	83	Reverse sensor stay jam	The reverse sensor (REVS) is not turned off even if a specified time has elapsed after the reverse sensor (REVS) was turned on.
		Reverse sensor remaining jam	The ON status of the reverse sensor (REVS) is detected when the power is turned on.
Processing section	84	Paper conveying sensor non-arrival jam	The paper conveying sensor (PCS) is not turned on even if a specified time has elapsed after the reverse sensor (REVS) was turned on.
	85	Paper conveying sensor stay jam	The paper conveying sensor (PCS) is not turned off even if a specified time has elapsed after the reverse sensor (REVS) was turned off.
		Paper conveying sensor remaining jam	The ON status of the paper conveying sensor (PCS) is detected when the power is turned on.
	86	Exit sensor non-arrival jam	In the straight mode, the exit sensor (EXS) is not turned on even if a specified time has elapsed after the paper entry sensor (PES) was turned on.
	87	Exit sensor stay jam	In the straight mode, the exit sensor (EXS) is not turned off even if a specified time has elapsed after the exit sensor (EXS) was turned on.
			In the offset or staple mode, the exit sensor (EXS) is not turned off when a specified time elapses after the bundle discharge unit starts descending.
		Exit sensor remaining jam	The ON status of the exit sensor (EXS) is detected when the power is turned on.

(3) Paper misfeeds

Problem	Causes/check procedures	Corrective measures
(1) An paper jams when the power switch is turned on. Jam code 81, 83, 85, 87	A piece of paper torn from an paper is caught around the paper entry sensor.	Check visually and remove it, if any.
	Defective paper entry sensor.	With 5 V DC present at CN14-1and CN14-3 on the main PCB, check if CN14-2 and CN14-4 on the main PCB remains low or high when the paper entry sensor is turned on and off. If it does, replace the paper entry sensor.
	A piece of paper torn from an paper is caught around the reverse sensor.	Check visually and remove it, if any.
	Defective reverse sensor.	With 5 V DC present at CN14-5 on the main PCB, check if CN14-7 on the main PCB remains low or high when the reverse sensor is turned on and off. If it does, replace the reverse sensor.
	A piece of paper torn from an paper is caught around the paper conveying sensor.	Check visually and remove it, if any.
	Defective paper conveying sensor.	With 5 V DC present at CN4-4 on the main PCB, check if CN4-6 on the main PCB remains low or high when the paper conveying sensor is turned on and off. If it does, replace the paper conveying sensor.
	A piece of paper torn from an paper is caught around the exit sensor.	Check visually and remove it, if any.
	Defective exit sensor.	With 5 V DC present at CN5-4 on the main PCB, check if CN5-6 on the main PCB remains low or high when the exit sensor is turned on and off. If it does, replace the exit sensor.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(2) An paper jams in the reverse section is indicated during copying (paper entry sensor non-arrival jam). Jam code 80	Extremely curled paper.	Change the paper.
	Defective paper entry sensor.	With 5 V DC present at CN14-1and CN14-3 on the main PCB, check if CN14-2and CN14-4 on the main PCB remains low or high when the paper entry sensor is turned on and off. If it does, replace the paper entry sensor.
	Check if the paper entry guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(3) An paper jams in the reverse section is indicated during copying (paper entry sensor stay jam). Jam code 81	Extremely curled paper.	Change the paper.
	Defective paper entry sensor.	With 5 V DC present at CN14-1and CN14-3 on the main PCB, check if CN14-2and CN14-4 on the main PCB remains low or high when the paper entry sensor is turned on and off. If it does, replace the paper entry sensor.
	Check if the paper entry guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.

Problem	Causes/check procedures	Corrective measures
(4) An paper jams in the reverse section is indicated during copying (reverse sensor non-arrival jam). Jam code 82	Defective reverse sensor.	With 5 V DC present at CN14-5 on the main PCB, check if CN14-7 on the main PCB remains low or high when the reverse sensor is turned on and off. If it does, replace the reverse sensor.
	Check if the reverse motor malfunctions.	Check (see page 1-3-8).
	Check if the reverse roller and reverse pulley contact each other.	Check and remedy.
	Check if the reverse guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(5) An paper jams in the reverse section is indicated during copying (reverse sensor stay jam). Jam code 83	Defective reverse sensor.	With 5 V DC present at CN14-5 on the main PCB, check if CN14-7 on the main PCB remains low or high when the reverse sensor is turned on and off. If it does, replace the reverse sensor.
	Check if the reverse motor malfunctions.	Check (see page 1-3-8).
	Check if the reverse roller and reverse pulley contact each other.	Check and remedy.
	Check if the reverse guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(6) An paper jams in the processing section is indicated during copying (paper conveying sensor non-arrival jam). Jam code 84	Defective paper conveying sensor.	With 5 V DC present at CN4-4 on the main PCB, check if CN4-6 on the main PCB remains low or high when the paper conveying sensor is turned on and off. If it does, replace the paper conveying sensor.
	Check if the paper conveying motor malfunctions.	Check (see page $\overline{1-3-8)}$.
	Check if the paper conveying roller and paper conveying pulley contact each other.	Check and remedy.
	Check if the paper conveying guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(7) An paper jams in the processing section is indicated during copying (paper conveying sensor stay jam). Jam code 85	Defective paper conveying sensor.	With 5 V DC present at CN4-4 on the main PCB, check if CN4-6 on the main PCB remains low or high when the paper conveying sensor is turned on and off. If it does, replace the paper conveying sensor.
	Check if the paper conveying motor malfunctions.	Check (see page 1-3-8).
	Check if the paper conveying roller and paper conveying pulley contact each other.	Check and remedy.

Problem	Causes/check procedures	Corrective measures
(7) An paper jams in the processing section is indicated during copying (paper conveying sensor stay jam). Jam code 85	Check if the paper conveying guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(8) An paper jams in the processing section is indicated during copying (exit sensor non-arrival jam). Jam code 86	Defective exit sensor.	With 5 V DC present at CN5-4 on the main PCB, check if CN5-6 on the main PCB remains low or high when the exit sensor is turned on and off. If it does, replace the exit sensor.
	Check if the paper conveying motor malfunctions.	Check (see page 1-3-8).
	Check if the exit roller and exit pulley contact each other.	Check and remedy.
	Check if the exit guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.
(9) An paper jams in the processing section is indicated during copying (exit sensor stay jam). Jam code 87	Defective exit sensor.	With 5 V DC present at CN5-4 on the main PCB, check if CN5-6 on the main PCB remains low or high when the exit sensor is turned on and off. If it does, replace the exit sensor.
	Check if the paper conveying motor malfunctions.	Check (see page 1-3-8).
	Check if the exit roller and exit pulley contact each other.	Check and remedy.
	Check if the exit guide is deformed.	Check and remedy.
	Defective main PCB.	Replace the main PCB and check for correct operation.

1-3-2 Self-diagnosis

(1) Self-diagnostic function

When a problem is detected in the finisher, copying is disabled and the copier operation section displays a code consisting of " C " followed by a number between 8030 and 8460 , indicating the nature of the problem.
After removing the problem, the self-diagnostic function can be reset by reattaching the finisher to turn the joint switch off and on. (C8440 and C8460, however, are released by turning the power off and then on.)
(2) Self diagnostic codes

Code	Contents	Remarks	
		Causes	Check procedures/corrective measures
C8030	Tray upper limit detection problem When the tray elevation motor raises a tray, the ON status of the tray upper limit sensor is detected.	The tray upper limit sensor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective tray upper limit sensor.	Replace the tray upper limit sensor and check for correct operation.
		The push paper sensor or surface view sensor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective push paper sensor or surface view sensor.	Replace the push paper sensor or surface view sensor and check for correct operation.
		Defective main PCB.	Replace the main PCB and check for correct operation.
C8140	Tray elevation motor problem When the tray elevation motor is driving, the ON status of the tray lower limit sensor or surface view sensor cannot be detected even if a specified time has elapsed.	The tray elevation motor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		The tray elevation motor malfunctions.	Replace the tray elevation motor and check for correct operation.
		The tray lower limit connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective tray lower limit sensor.	Replace the tray lower limit sensor or surface view sensor and check for correct operation.
		The push paper sensor or surface view sensor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective push paper sensor or surface view sensor.	Replace the push paper sensor or surface view sensor and check for correct operation.
		Defective main PCB.	Replace the main PCB and check for correct operation.

Code	Contents	Remarks	
		Causes	Check procedures/corrective measures
C8170	Adjustment motor problem When the adjustment motor is driving, the ON status of the adjustment home position sensor cannot be detected even if a specified time has elapsed. When adjustment operation starts, the ON status of the adjustment home position sensor is not detected.	The Adjustment motor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		The Adjustment motor malfunctions.	Replace the Adjustment motor and check for correct operation.
		The Adjustment home position sensor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective Adjustment home position sensor.	Replace the Adjustment home position sensor and check for correct operation.
		Defective main PCB.	Replace the main PCB and check for correct operation.
C8210	Stapler problem When the stapler motor is driving, the ON status of the stapler home position sensor cannot be detected even if a specified time has elapsed.	The stapler connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		The stapler is blocked with a staple.	Remove the stapler cartridge, and check the cartridge and the stapling section of the stapler.
		The stapler is broken.	Replace the stapler and check for correct operation.
		Defective main PCB.	Replace the main PCB and check for correct operation.
C8440	Sensor adjusting problem The sensor cannot be adjusted within the specified range.	The paper entry sensor connector makes poor contact.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
		Defective paper entry sensor.	Replace the paper entry sensor and check for correct operation.
		The optical path of the paper entry sensor is blocked by foreign matter.	Remove the foreign matter.
		Defective main PCB	Replace the main PCB and check for correct operation.
C8460	EEPROM problem Reading from or writing to EEPROM cannot be performed.	Defective EEPROM or main PCB.	Replace the main PCB and check for correct operation.

1-3-3 Electrical problems

Problem	Causes	Check procedures/corrective measures
(1) The reverse motor does not operate.	Poor contact in the reverse motor connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective reverse motor.	Check if the reverse motor rotates when 24 V DC is present at CN15-1 and CN15-2, and drive pulses are at CN15-3, CN15-4, CN15-5 and CN15-6 on the main PCB. If not, replace the reverse motor.
	Defective main $\overline{\mathrm{PCB}}$.	Check if CN15-3, CN15-4, CN15-5 and CN15-6 on the main PCB goes low. If not, replace the main PCB.
(2) The paper conveying motor does not operate.	Poor contact in the paper conveying motor connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective paper conveying motor.	Check if the paper conveying motor rotates when 24 V DC is present at CN7-5 and CN7-6, and drive pulses are at CN7-1, CN7-2, CN7-3 and CN7-4 on the main PCB. If not, replace the paper conveying motor.
	Defective main PCB.	Check if CN7-1, CN7-2, CN7-3 and CN7-4 on the main PCB goes low. If not, replace the main PCB.
(3) The adjustment motor does not operate.	Poor contact in the adjustment motor connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective adjustment motor.	Check if the adjustment motor rotates when drive pulses are at CN8-1, CN8-2, CN8-3 and CN8-4 on the main PCB. If not, replace the adjustment motor.
	Defective main $\overline{\mathrm{PCB}}$.	Check if CN8-1, CN8-2, CN8-3 and CN8-4 on the main PCB goes low. If not, replace the main PCB.
(4) The tary elevation motor does not operate.	Poor contact in the tary elevation motor connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective tary elevation motor.	Check if the tary elevation motor rotates when 24 VDC is present at CN11-7 and CN11-8 on the main PCB. If not, replace the tary elevation motor.
	Defective main $\overline{\mathrm{PCB}}$.	Check if 24 V DC is present at $\mathrm{CN} 11-7$ and $\mathrm{CN} 11-8$ on the main PCB. If not, replace the main PCB.
(5) The separate solenoid does not operate.	Defective separate solenoid coil.	Check for continuity across the coil. If none, replace the separate solenoid.
	Poor contact in the separate solenoid connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective main $\overline{\mathrm{PCB}}$.	Check if CN12-3 on the main PCB goes low. If not, replace the main PCB.
(6) The flapper solenoid does not operate.	Defective flapper solenoid coil.	Check for continuity across the coil. If none, replace the flapper solenoid.
	Poor contact in the flapper solenoid connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective main PCB.	Check if CN12-1 on the main PCB goes low. If not, replace the main PCB.

Problem	Causes	Check procedures/corrective measures
(7) The large gear solenoid does not operate.	Defective large gear solenoid coil.	Check for continuity across the coil. If none, replace the large gear solenoid.
	Poor contact in the large gear solenoid connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective main PCB.	Check if CN17-2 on the main PCB goes low. If not, replace the main PCB.
(8) The paddle solenoid does not operate.	Defective paddle solenoid coil.	Check for continuity across the coil. If none, replace the paddle solenoid.
	Poor contact in the paddle solenoid connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective main PCB.	Check if CN9-2 on the main PCB goes low. If not, replace the main PCB.
(9) The surface view solenoid does not operate.	Defective surface view solenoid coil.	Check for continuity across the coil. If none, replace the surface view solenoid.
	Poor contact in the surface view solenoid connector terminals.	Reinsert the connector. Also check for continuity within the connector cable. If none, remedy or replace the cable.
	Defective main PCB.	Check if CN6-2 and CN6-3 on the main PCB goes low. If not, replace the main PCB.
(10) Paper jams when the power switch is turned on.	A piece of paper torn from an paper is caught around the paper entry sensor.	Check visually and remove it, if any.
	Defective paper entry sensor.	With 5 V DC present at CN14-1 and CN14-3 on the main PCB, check if CN14-2 and CN14-4 on the main PCB remains low or high when the paper entry sensor is turned on and off. If it does, replace the paper entry sensor.
	A piece of paper torn from an paper is caught around the reverse sensor.	Check visually and remove it, if any.
	Defective reverse sensor.	With 5 V DC present at CN14-5 on the main PCB, check if CN147 on the main PCB remains low or high when the reverse sensor is turned on and off. If it does, replace the reverse sensor.
	A piece of paper torn from an paper is caught around the paper conveying sensor	Check visually and remove it, if any.
	Defective paper conveying sensor.	With 5 V DC present at CN4-4 on the main PCB, check if CN4-6 on the main PCB remains low or high when the paper conveying sensor is turned on and off. If it does, replace the paper conveying sensor.
	A piece of paper torn from an paper is caught around the exit sensor.	Check visually and remove it, if any.
	Defective exit sensor.	With $5 \mathrm{~V} \overline{\mathrm{DC}}$ present at $\overline{\mathrm{CN} 5-4}$ on the main $\overline{\mathrm{PCB}}$, check if $\overline{\mathrm{CN} 5-6}$ on the main PCB remains low or high when the exit sensor is turned on and off. If it does, replace the exit sensor.
	Defective main PCB.	Replace the main PCB and check for correct operation.

1-3-4 Mechanical problems

Problem	Causes/check procedures	Corrective measures
(1) No paper conveying.	Paper outside specifications is used.	Use only paper conforming to the specifications.
	Check if the surfaces of the paper conveying roller, paper conveying pulleys, reverse roller and reverse pulleys are soiled with paper powder.	Clean with isopropyl alcohol, if they are soiled.
	Check if the paper conveying roller, paper conveying pulleys, reverse roller and reverse pulleys are deformed.	Replace any deformed or worn pulleys or roller.
(2) No paper ejection to the exit tray.	Paper outside specifications is used.	Use only paper conforming to the specifications.
	Check if the surfaces of the exit roller and pulleys are soiled with paper powder.	Clean with isopropyl alcohol, if they are soiled.
	Check if the exit roller and pulleys are deformed.	Replace any deformed or worn pulleys or roller.
(3) Paper jams.	Paper outside specifications is used.	Use only paper conforming to the specifications.
	Check if the paper is extremely curled.	Change the paper.
	Check if the paper conveying roller and pulleys, or reverse roller and pulleys make proper contact.	Remedy if there are any problems.
	Check if the exit roller and pulleys make proper contact.	Remedy if there are any problems.
(4) Abnormal noise is heard.	Check if rollers, pulleys and gears all operate smoothly.	Apply grease to the bushings and gears.
	Check to see if the vibration noise of each motor is abnormally high.	Readjust the tension of the motor bracket.

1-4-1 Assembly and disassembly

(1) Precautions

- Be sure to turn the power switch off and disconnect the power plug before starting disassembly.
- When handling PCBs, do not touch connectors with bare hands or damage the board.
- Do not touch any PCB containing ICs with bare hands or any object prone to static charge.
- Use the following testers when measuring voltages:

Hioki 3200
Sanwa MD-180C
Sanwa YX-360TR
Beckman TECH300
Beckman DM45
Beckman 330*
Beckman 3030*
Beckman DM850*
Fluke 8060A*
Arlec DMM1050
Arlec YF1030C

* Capable of measuring RMS values.

5HL

(2) Cleaning the paper conveying roller and reverse exit roller

Follow the procedure below to clean the paper conveying roller and reverse exit roller.

Procedure

1. Remove the two screws holding the front cover and then the cover.

Figure 1-4-1
2. Remove the two screws holding the rear cover and then the cover.

Figure 1-4-2
3. Open the upper cover and release the front and rear stopper.
4. Release the fitting portions of the upper cover and then remove the cover.

Figure 1-4-3
5. Remove the two screws and connector and then remove the paper conveying guide unit.
6. Clean the paper conveying roller and reverse exit roller.

Figure 1-4-4

2-1-1 Mechanical construction

(1) Reverse section

The reverse section consists of the components shown in Fig. 2-1-1 and conveys paper that is fed from the copier into the finisher to the reverse unit or the processing section. Feedshift to the reverse unit or the processing section is performed with the flapper that is activated by the flapper solenoid (FSOL).
In the reverse mode, paper that is fed into the finisher is temporarily fed to the reverse unit, is reversed, and then is conveyed to the processing section with the rotation of the reverse roller and reverse exit roller.

Figure 2-1-1
(1) Paper entry sensor 1 (PES1)
(6) Reverse pulley
(2) Paper entry sensor 2 (PES2)
(7) Separate solenoid (SSOL)
(3) Flapper
(8) Reverse sensor (REVS)
(4) Flapper
(9) Reverse exit roller
(5) Reverse roller
(10) Paper conveying pulley

Figure 2-1-2 Block diagram

Operation without reversing

1. When the operation start signal is received, the flapper solenoid (FSOL) is turned on to open the non-reverse path.
2. After the copier exit signal is received, the reverse motor (RM) is turned on at the copier exit speed.
3. When the leading edge of paper arrives at the paper entry sensor (PES), the paper conveying motor (PCM) is turned on at the copier exit speed.
4. The reverse exit roller that is rotated by the drive of the reverse motor (RM) conveys paper to the processing section.

Figure 2-1-3 Operation without reversing

5HL

Timing chart 2-1-1 Operation without reversing
(a) When the copier exit switch is turned on, the flapper solenoid (FSOL) is turned on. Also the reverse motor (RM) is turned on at $230 \mathrm{~mm} / \mathrm{s}$ (copier exit speed).
(b) When the paper entry sensor (PES) is turned on by the leading edge of paper, the paper conveying motor (PCM) is turned on at $230 \mathrm{~mm} / \mathrm{s}$ (copier exit speed).
(c) When the trailing edge of paper has passed and the paper entry sensor (PES) is turned off, the paper conveying motor (PCM) is accelerated to $400 \mathrm{~mm} / \mathrm{s}$.

Operation with reversing

1. When the operation start signal is received, the flapper solenoid (FSOL) is turned off to open the reverse path.
2. After the copier exit signal is received, the reverse motor (RM) is turned on at the copier exit speed.

Figure 2-1-4
3. When the leading edge of paper arrives at the paper entry sensor (PES), if the separate solenoid (SSOL) is in the suction state, the paper is separated. If the paper conveying motor (PCM) stops, the motor is turned on at the copier exit speed.

Figure 2-1-5
4. Suction of the separate solenoid (SSOL) is activated just before the trailing edge of paper passes through the copier exit roller.
5. When the trailing edge of paper passed through the copier exit roller, the reverse motor (RM) is accelerated to pull the paper out.

Figure 2-1-4
6. After the paper stops at the reverse position, the reverse motor (RM) is rotated in the reverse direction to convey the paper to the processing section.
7. After the leading edge of paper arrives at the reverse sensor (REVS), the separate solenoid (SSOL) is separated to receive the next paper.

Figure 2-1-5

Timing chart 2-1-2 Operation with reversing

(a) When the copier exit switch is turned on, the reverse motor (RM) is turned on at $230 \mathrm{~mm} / \mathrm{s}$ (copier exit speed).
(b) When the paper entry sensor (PES) is turned on by the leading edge of paper, the separate solenoid (SSOL) is turned on. Also the paper conveying motor (PCM) is turned on at $230 \mathrm{~mm} / \mathrm{s}$ (copier exit speed).
(c) Just before the trailing edge of paper passes through the copier exit roller, the separate solenoid (SSOL) is turned off.
(d) After the trailing edge of paper has passed through the copier exit roller, the reverse motor (RM) is accelerated to 600 mm / s.
(e) After the paper stops at the reverse position, the reverse motor (RM) is started in the reverse direction at $600 \mathrm{~mm} / \mathrm{s}$.
(f) After the leading edge of paper has passed the reverse sensor (REVS), the separate solenoid (SSOL) is turned on.
(9) Before the leading edge of paper arrives at the paper conveying roller, the reverse motor (RM) and the paper conveying motor (PCM) are accelerated or decelerated to $400 \mathrm{~mm} / \mathrm{s}$.
(h) After the leading edge of paper has passed through the paper conveying roller, the reverse motor (RM) is turned off. Also the paper conveying motor (PCM) is accelerated to $450 \mathrm{~mm} / \mathrm{s}$.

(2) Processing section

The processing section consists of the components shown in Fig. 2-1-8 and discharges paper conveyed from the finisher reverse section to the exit tray. Also this section performs processing in the bundle discharge mode and the staple mode.

Figure 2-1-8
(1) Paper conveying sensor (PCS)
(2) Paper conveying roller
(3) Paper conveying pulley
(4) Bundle discharge unit
(5) Paddle
(6) Paper conveying belt
(7) Processing tray
(8) Exit pulley
(9) Exit roller
(10) Exit sensor (EXS)
(11) Adjunstment home position sensor (ADHPS)
(12) Large gear solenoid (LGSOL)

Figure 2-1-9 Block diagram

Bundle discharge operation

1. When paper is conveyed into the processing section, the large gear solenoid (LGSOL) is turned on to raise the bundle discharge unit.

Figure 2-1-10
2. Before the trailing edge of paper passes through the conveying roller, the paper conveying motor (PCM) is decelerated to discharge the paper to the processing tray.
3. The paddle solenoid (PDSOL) is turned on and the paddle rotates one turn to carry the paper into the processing tray.
4. The adjustment motor (ADM) is started to adjust the paper using the adjustment plate.

Figure 2-1-11
5. When adjustment of the last sheet of the bundle is completed, the large gear solenoid (LGSOL) is turned off to lower the bundle discharge unit.
6 . The conveying belt and the exit roller rotate to discharge the bundle of paper to the exit tray.

Figure 2-1-12

Timing chart 2-1-3 Bundle discharge operation
(a) The large gear solenoid (LGSOL) is turned on to raise the bundle discharge unit.
(b) Before the trailing edge of paper passes through the paper conveying roller, the paper conveying motor (PCM) is accelerated or decelerated to $200 \mathrm{~mm} / \mathrm{s}$.
(c) The paddle solenoid (PDSOL) is turned on and the paddle rotates one turn.
(d) The adjustment motor (ADM) starts to adjust the paper.
(e) After adjustment of the last sheet of the bundle is completed, the paper conveying motor (PCM) is accelerated or decelerated to $176 \mathrm{~mm} / \mathrm{s}$. Also the large gear solenoid (LGSOL) is turned off to lower the bundle discharge unit.

(3) Exit tray section

The exit tray section consists of the components shown in Fig. 2-1-13 and stocks paper discharged from the processing section using rotation of the exit roller and exit pulley.
The upper limit position and the lower limit position of the exit tray are detected with the tray upper limit sensor (TULS) and the tray lower limit sensor (TLLS). Also the paper stock quantity is detected with the push paper sensor (PPS) and the surface view sensor (SVS).

Figure 2-1-13
(1) Exit pulley
(6) Rack
(2) Exit roller
(7) Rack gear
(3) Push paper lever
(8) Tray elevation motor (TEM)
(4) Push paper sensor (PPS)
(9) Tray upper limit sensor (TULS)
(5) Surface viaw sensor (SVS)
(10) Tray lower limit sensor (TLLS)

Figure 2-1-14 Block diagram

Exit tray up/down operation

1. Paper surface empty status

- Sensor status

Push paper sensor (PPS): OFF
Surface viaw sensor (SVS): OFF

- Exit tray control

Tray elevation motor (TEM): Forward rotation.
Exit tray: Moves up.
This status occurs when paper is removed from the exit tray.

Figure 2-1-15 Paper surface empty status

2. Paper surface off status

- Sensor status

Push paper sensor (PPS): ON
Surface viaw sensor (SVS): OFF

- Exit tray control

Tray elevation motor (TEM): OFF
Exit tray: Does not move.
If this status is detected when the exit tray is moving up or down, the tray is stopped.

Figure 2-1-16 Paper surface off status

3. Paper surface on status

- Sensor status

Push paper sensor (PPS): ON
Surface viaw sensor (SVS): ON

- Exit tray control

Tray elevation motor (TEM): Reverse rotation.
Exit tray: Moves down.
This status occurs when paper is output onto the exit tray during copying and is accumulated.

Figure 2-1-17 Paper surface on status

4. Lever stored status

- Sensor status

Push paper sensor (PPS): OFF
Surface viaw sensor (SVS): ON

- Exit tray control

Tray elevation motor (TEM): Reverse rotation.
Exit tray: Moves down.
This status occurs when paper is accumulated so much, for example at the start of copying, that the push paper lever cannot be released.

Figure 2-1-18 Lever stored status

2-2-1 Electrical parts layout

(1) PCB

Figure 2-2-1 Electrical parts layout (PCB)

1. Main PCB (MPCB) \qquad Controls electrical components.

Machine rear
Figure 2-1-2 Electrical parts layout (switches and sensors)

1. Joint switch (JSW) \qquad Detects the finisher attached to the copier.
2. Reverse cover switch (RCSW) Detects opening/closing of the reverse cover.
3. Upper cover sensor (UCS) \qquad Detects opening/closing of the upper cover.
4. Paper entry sensor 1 (PES1)

Detects paper entering the finisher (emitter).
5. Paper entry sensor 2 (PES2)

Detects paper entering the finisher (receiver).
6. Reverse sensor (REVS)

Detects a paper misfeed in the reverse section.
7. Paper conveying sensor (PCS)

Detects a paper misfeed in the processing section.
8. Adjustment home position sensor (ADHPS) \qquad Detects the adjustment plate in the home position.
9. Exit sensor (EXS) Detects a paper misfeed in the exit section.
10. Bundle discharge unit switch (BDUSW) Power supply to the stapler section caused by descent of the bundle discharge unit.
11. Push paper sensor (PPS) \qquad Detects the position of the push paper lever.
12. Surface view sensor (SVS) \qquad Detects the position of the push paper lever.
13. Tray upper limit sensor (TULS) Detects the exit tray reaching the upper limit.
14. Tray lower limit sensor (TLLS) Detects the exit tray reaching the lower limit.
15. Stapler cover switch (STCSW) Detects opening/closing of the stapler cover.
(3) Motors

D $7 \triangle$ Machine insideMachine rear

Figure 2-1-3 Electrical parts layout (motors)

1. Reverse motor (RM) \qquad Drives the reverse section.
2. Paper conveying motor (PCM) Drives the processing section.
3. Adjustment motor (ADM)

Drives the adjustment plate.
4. Tray elevation motor (TEM)

Raises and lowers the exit tray.

Figure 2-1-4 Electrical parts layout (solenoids)

1. Separate solenoid (SSOL) \qquad Separates the reverse roller.
2. Flapper solenoid (FSOL)

Operates the flapper.
3. Large gear solenoid (LGSOL)

Operates the bundle discharge unit.
4. Paddle solenoid (PDSOL)

Operates the paddle.
5. Surface view solenoid (SVSOL)

Operates the push paper lever.
(5) Stapler section

Figure 2-1-5 Electrical parts layout (stapler section)

1. Stapler empty sensor (STES) \qquad Detects the presence of staples.
2. Stapler cartridge sensor (STCS)

Detects the presence of the stapler cartridge.
3. Stapler home position sensor (STHPS)

Detects the stapler in the home position.
4. Stapler self-priming sensor (STSPS)

Detects the pre-stapling state of the stapler.
5. Stapler motor (STM)

Drives the stapler.

2-3-1 Main PCB

Figure 2-3-1 Main PCB block diagram

Figure 2-3-2 Main PCB silk-screen diagram

Connector	Pin No.	Signal	I/O	Description
CN1	1	DC+5V	1	5 V DC power supply from copier
Connected to the copier	2	SGND	-	Ground
	3	PGND	-	Ground
	4	PGND	-	Ground
	5	PGND	-	Ground
	6	PGND	-	Ground
	7	DC+24V	I	24 V DC power supply from copier
	8	DC+24V	I	24 V DC power supply from copier
	9	DC+24V	I	24 V DC power supply from copier
	10	DC+24V	I	24 V DC power supply from copier
CN2	1	CNCT	O	Finisher set signal
Connected to the copier	2	SGND	-	Ground
	3	RxD	1	Serial communication signal reception
	4	SGND	-	Ground
	5	TxD	0	Serial communication signal transmission
CN3	1	DC+24V	0	24 V DC power supply to STCSW/BDUSW
Connected to the stapler cover switch and budle discharge unit switch	2	STCSW	1	STCSW: On/Off
	3	STCSW	1	STCSW: On/Off
	4	BDUSW	1	BDUSW: On/Off

6500 (msec)
응
웅
웅

\qquad
Timing chart No. 1 Operation without reversing, A4/11" $\times 81 / 2$ " copy paper in the straight mode

$$
30
$$

Timing chart No. 3 Operation with reversing, A4/11" $\times 8^{1 / 2} 2^{" ~ c o p y ~ p a p e r ~ i n ~ t h e ~ s t a p l i n g ~ m o d e ~}$

Periodic maintenance procedure

Processing area	Maintenance part(s) and location	Contents	Maintenance cycle	Essential points and notes	Page
Exterior	Overall exterior cover	Cleaning	Every time	Wipe with dry cloth or cloth moistened with alcohol.	

Processing area	Maintenance part(s) and location	Contents	Maintenance cycle	Essential points and notes	Page
Paper conveying section	Push paper sensor Surface view sensor Upper cover sensor Paper conveying sensor Adjusting hone position sensor Exit sensor Tray upper limit sensor Tray lower limit sensor Reverse sensor Exit roller Paper conveying belt Paper conveying roller Paddle Front static eliminator Rear static eliminator Reverse static eliminator Push paper lever cushion	Cleaning Check Check Check Cleaning	Every time Every time	Air brush Wipe with cloth moistened with alcohol. If paper powder or dust adheres to tip of brush, remove it. If paper powder or dust adheres to tip of brush, remove it. If paper powder or dust adheres to tip of brush, remove it. Wipe with cloth moistened with alcohol.	

30 cpm : Every 400K counts, 40/50cpm: Every 500K counts

List of maintenance parts

Part names	Part number	Fig. No.	Ref. No.	
Name used in the service manual	Name used in the parts list			
Push paper sensor	TLP1241 (C5)	$5 A A 09040$	1	2
Surface view sensor	TLP1241 (C5)	$5 A A 09040$	1	2
Upper cover sensor	TLP1241 (C5)	$5 A A 09040$	1	2
Paper conveying sensor	TLP1241 (C5)	$5 A A 09040$	1	2
Adjusting hone position sensor	TLP1241 (C5)	$5 A A 09040$	3	12
Exit sensor	TLP1241 (C5)	$5 A A 09040$	3	12
Tray upper limit sensor	TLP1241 (C5)	$5 A A 09040$	4	12
Tray lower limit sensor	TLP1241 (C5)	$5 A A 09040$	4	14
Reverse sensor	TLP1241 (C5)	$5 A A 09040$	5	14
Exit roller	ROL-R-H-OUT	$5 H L 09370$	1	52
Paper conveying belt	CAT-C	$5 H L 09360$	1	41
Paper conveying roller	ROL-R-CAT	$5 H L 09640$	1	55
Paddle	PDL-TH	$5 H L 09430$	1	45
Front static eliminator	BRUSH-TH-IN	$5 H L 09440$	1	22
Rear static eliminator	BRUSH-TH-OUT	$5 H L 09470$	1	14
Reverse static eliminator	BRSH-RV	$5 H L 12320$	5	13
Push paper lever cushion	CUSION-TM-YO	$5 H L 09660$	1	59

Wiring diagram

KYOCERA MITA EUROPE B.V.

Hoeksteen 40, 2132 MS Hoofddorp,
The Netherlands
Phone: +31.(0)20.654.000
Home page: http://www.kyoceramita-europe.com
Email: info@kyoceramita-europe.com
KYOCERA MITA NEDERLAND B.V.
Hoeksteen 402132 MS Hoofddorp
The Netherlands
Phone: +31.(0)20.587.7200
KYOCERA MITA (UK) LTD.
8 Beacontree Plaza
Gillette Way,
Reading Berks RG2 OBS, UK
Phone: +44.(0)118.931.1500
KYOCERA MITA ITALIA S.P.A.
Via Verdi 89 / 9120063 Cernusco sul Naviglio,
Italy
Phone: +39.02.92179.1
S.A. KYOCERA MITA BELGIUM N.V.

Hermesstraat 8A 1930 Zaventem Belgium
Phone: +32.(0)2.720.9270
KYOCERA MITA FRANCE S.A.
Parc Les Algorlthmes
Saint Aubin
91194 GIF-SUR-YVETTE
France
Phone: +33.(0)1.6985.2600
KYOCERA MITA ESPAÑA S.A.
Edificio Kyocera, Avda de Manacor N. 2,
Urb. Parque Rozas 28290 Las Rozas,
Madrid, Spain
Phone: +34.(0)91.631.8392
KYOCERA MITA FINLAND OY
Kirvesmiehenkatu 400810 Helsinki,
Finland
Phone: +358.(0)9.4780.5200
KYOCERA MITA (SCHWEIZ) AG
Holzliwisen Industriestrasse 28
8604 Volketswil, Switzerland
Phone: +41.(0)1.908.4949
KYOCERA MITA DEUTSCHLAND GMBH
Mollsfeld 12 D-40670 Meerbusch,
Germany
Phone: +49.(0)2159.918.0
KYOCERA MITA GMBH AUSTRIA
Eduard-Kittenberger Gasse 95
1230 Wien, Austria
Phone: +43.(0)1.86338.0
KYOCERA MITA SVENSKA AB
Box 140217127 Solna, Sweden
Phone: +46.(0)8.546.550.00
KYOCERA MITA NORGE
Postboks 150 Oppsal, NO 0619 Oslo
Olaf Helsetsvei 6, NO 0694 Oslo
Phone: +47.(0)22.62.73.00

KYOCERA MITA DANMARK A/S
Hovedkontor: Slotsmarken 11,
DK-2970 Hørsholm, Denmark
Phone: +45.(70)22.3880
KYOCERA MITA PORTUGAL LDA.
Rua do Centro Cultural, no 41 1700-106
Lisbon, Portugal
Phone: +351.(0)21.842.9100
KYOCERA MITA SOUTH AFRICA
(PTY) LTD.
527 Kyalami Boulevard,
Kyalami Business Park 1685 Midrand South Phone: +27.(0)11.466.3290

KYOCERA MITA
AMERICA, INC.

Headquarters:

225 Sand Road,
Fairfield, New Jersey 07004-0008,
U.S.A.

Phone: (973) 808-8444
KYOCERA MITA AUSTRALIA PTY. LTD. Level 3, 6-10 Talavera Road, North Ryde, N.S.W. 2113 Australia

Phone: (02) 9888-9999
KYOCERA MITA NEW ZEALAND LTD.
1-3 Parkhead Place, Albany
P.O. Box 302125 NHPC,Auckland,

New Zealand
Phone: (09) 415-4517
KYOCERA MITA (THAILAND) CORP., LTD.
9/209 Ratchada-Prachachem Road,
Bang Sue, Bangkok 10800, Thailand
Phone: (02) 586-0320
KYOCERA MITA SINGAPORE PTE LTD.
121 Genting Lane, 3rd Level,
Singapore 349572
Phone: 67418733

KYOCERA MITA HONG KONG

LIMITED
11/F., Mita Centre,
552-566, Castle Peak Road,
Tsuen Wan, New Territories,
Hong Kong
Phone: 24297422
KYOCERA MITA TAIWAN
Corporation.
7F-1~2, No.41, Lane 221, Gangchi Rd.
Neihu District, Taipei, Taiwan, 114. R.O.C.
Phone: (02) 87511560

KYOCERA MITA Corporation

2-28, 1-chome, Tamatsukuri, Chuo-ku
Osaka 540-8585, Japan
Phone: (06) 6764-3555
http://www.kyoceramita.com

